Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 38(3): 644-654, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31677948

RESUMO

Naturally occurring smallpox has been eradicated but research stocks of variola virus (VARV), the causative agent of smallpox, still exist in secure laboratories. Clandestine stores of the virus or resurrection of VARV via synthetic biology are possible and have led to concerns that VARV could be used as a biological weapon. The US government has prepared for such an event by stockpiling smallpox vaccines and TPOXX®, SIGA Technologies' smallpox antiviral drug. While vaccination is effective as a pre-exposure prophylaxis, protection is limited when administered following exposure. Safety concerns preclude general use of the vaccine unless there is a smallpox outbreak. TPOXX is approved by the FDA for use after confirmed diagnosis of smallpox disease. Tecovirimat, the active pharmaceutical ingredient in TPOXX, targets a highly conserved orthopoxviral protein, inhibiting long-range dissemination of virus. Although indications for use of the vaccine and TPOXX do not overlap, concomitant use is possible, especially if the TPOXX indication is expanded to include post-exposure prophylaxis. It is therefore important to understand how vaccine and TPOXX may interact. In studies presented here, monkeys were vaccinated with the ACAM2000TM live attenuated smallpox vaccine and concomitantly treated with tecovirimat or placebo. Immune responses to the vaccine and protective efficacy versus a lethal monkeypox virus (MPXV) challenge were evaluated. In two studies, primary and anamnestic humoral immune responses were similar regardless of tecovirimat treatment while the third study showed reduction in vaccine elicited humoral immunity. Following lethal MPXV challenge, all (12 of 12) vaccinated/placebo treated animals survived, and 12 of 13 vaccinated/tecovirimat treated animals survived. Clinical signs of disease were elevated in tecovirimat treated animals compared to placebo treated animals. This suggests that TPOXX may affect the immunogenicity of ACAM2000 if administered concomitantly. These studies may inform on how vaccine and TPOXX are used during a smallpox outbreak.


Assuntos
Benzamidas/administração & dosagem , Imunogenicidade da Vacina/efeitos dos fármacos , Isoindóis/administração & dosagem , Monkeypox virus/efeitos dos fármacos , Vacina Antivariólica/administração & dosagem , Animais , Benzamidas/imunologia , Quimioterapia Combinada , Feminino , Imunogenicidade da Vacina/imunologia , Isoindóis/imunologia , Macaca fascicularis , Macaca mulatta , Masculino , Monkeypox virus/imunologia , Primatas , Vacina Antivariólica/imunologia , Resultado do Tratamento
2.
N Engl J Med ; 376(4): 330-341, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-25830322

RESUMO

BACKGROUND: The worst Ebola virus disease (EVD) outbreak in history has resulted in more than 28,000 cases and 11,000 deaths. We present the final results of two phase 1 trials of an attenuated, replication-competent, recombinant vesicular stomatitis virus (rVSV)-based vaccine candidate designed to prevent EVD. METHODS: We conducted two phase 1, placebo-controlled, double-blind, dose-escalation trials of an rVSV-based vaccine candidate expressing the glycoprotein of a Zaire strain of Ebola virus (ZEBOV). A total of 39 adults at each site (78 participants in all) were consecutively enrolled into groups of 13. At each site, volunteers received one of three doses of the rVSV-ZEBOV vaccine (3 million plaque-forming units [PFU], 20 million PFU, or 100 million PFU) or placebo. Volunteers at one of the sites received a second dose at day 28. Safety and immunogenicity were assessed. RESULTS: The most common adverse events were injection-site pain, fatigue, myalgia, and headache. Transient rVSV viremia was noted in all the vaccine recipients after dose 1. The rates of adverse events and viremia were lower after the second dose than after the first dose. By day 28, all the vaccine recipients had seroconversion as assessed by an enzyme-linked immunosorbent assay (ELISA) against the glycoprotein of the ZEBOV-Kikwit strain. At day 28, geometric mean titers of antibodies against ZEBOV glycoprotein were higher in the groups that received 20 million PFU or 100 million PFU than in the group that received 3 million PFU, as assessed by ELISA and by pseudovirion neutralization assay. A second dose at 28 days after dose 1 significantly increased antibody titers at day 56, but the effect was diminished at 6 months. CONCLUSIONS: This Ebola vaccine candidate elicited anti-Ebola antibody responses. After vaccination, rVSV viremia occurred frequently but was transient. These results support further evaluation of the vaccine dose of 20 million PFU for preexposure prophylaxis and suggest that a second dose may boost antibody responses. (Funded by the National Institutes of Health and others; rVSV∆G-ZEBOV-GP ClinicalTrials.gov numbers, NCT02269423 and NCT02280408 .).


Assuntos
Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Adulto , Anticorpos Antivirais/sangue , Método Duplo-Cego , Vacinas contra Ebola/administração & dosagem , Vacinas contra Ebola/efeitos adversos , Ebolavirus/genética , Ebolavirus/isolamento & purificação , Ensaio de Imunoadsorção Enzimática , Feminino , Doença pelo Vírus Ebola/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes , Soroconversão , Vacinas Atenuadas/imunologia , Vírus da Estomatite Vesicular Indiana , Proteínas do Envelope Viral/isolamento & purificação , Viremia
3.
Antimicrob Agents Chemother ; 59(7): 4296-300, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25896687

RESUMO

The therapeutic efficacies of smallpox vaccine ACAM2000 and antiviral tecovirimat given alone or in combination starting on day 3 postinfection were compared in a cynomolgus macaque model of lethal monkeypox virus infection. Postexposure administration of ACAM2000 alone did not provide any protection against severe monkeypox disease or mortality. In contrast, postexposure treatment with tecovirimat alone or in combination with ACAM2000 provided full protection. Additionally, tecovirimat treatment delayed until day 4, 5, or 6 postinfection was 83% (days 4 and 5) or 50% (day 6) effective.


Assuntos
Antivirais/uso terapêutico , Benzamidas/uso terapêutico , Isoindóis/uso terapêutico , Monkeypox virus , Vacina Antivariólica/uso terapêutico , Varíola/tratamento farmacológico , Vacinas Virais/uso terapêutico , Animais , Peso Corporal/efeitos dos fármacos , Terapia Combinada , Contagem de Leucócitos , Macaca fascicularis , /virologia , Monkeypox virus/imunologia , Vacinação , Carga Viral/efeitos dos fármacos
4.
Vaccine ; 29(52): 9684-90, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22001879

RESUMO

The New York City Board of Health (NYCBH) vaccinia virus is the currently licensed vaccine for use in the US against smallpox. The vaccine under investigation in this study has been attenuated by deletion of the innate immune evasion gene, E3L, and shown to be protective in homologous virus mouse challenge and heterologous virus mouse and rabbit challenge models. In this study we compared NYCBH deleted for the E3L gene (NYCBHΔE3L) to NYCBH for the ability to induce phosphorylation of proinflammatory signaling proteins and the ability to protect cynomolgus macaques from heterologous challenge with monkeypox virus (MPXV). NYCBHΔE3L induced phosphorylation of PKR and eIF2α as well as p38, SAPK/JNK, and IRF3 which can lead to induction of proinflammatory gene transcription. Vaccination of macaques with two doses of NYCBHΔE3L resulted in negligible pock formation at the site of scarification in comparison to vaccination using a single dose of NYCBH, but still elicited neutralizing antibodies and protected 75% of the animals from mortality after challenge with MPXV. However, NYCBHΔE3L-vaccinated animals developed a high number of secondary skin lesions and blood viral load similar to that seen in unvaccinated controls. The NYCBHΔE3L-vaccinated animals that survived MPXV challenge were able to show resolution of blood viral load, a decrease in number of skin lesions, and an improved clinical score by three weeks post challenge. These results suggest that although the highly attenuated NYCBHΔE3L allows proinflammatory signal transduction to occur, it does not provide full protection against monkeypox challenge.


Assuntos
Deleção de Genes , Monkeypox virus/imunologia , Proteínas de Ligação a RNA/genética , Vacina Antivariólica/imunologia , Vaccinia virus/imunologia , Proteínas Virais/genética , Fatores de Virulência/genética , Animais , Feminino , Macaca fascicularis , Masculino , /mortalidade , Cidade de Nova Iorque , Doenças dos Primatas/imunologia , Doenças dos Primatas/prevenção & controle , Dermatopatias/prevenção & controle , Vacina Antivariólica/administração & dosagem , Análise de Sobrevida , Estados Unidos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vaccinia virus/genética , Vaccinia virus/patogenicidade , Viremia/prevenção & controle
5.
Vaccine ; 28(43): 7081-91, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20728526

RESUMO

Despite the eradication of smallpox, there is heightened concern that it could be reintroduced as a result of intentional release of Variola major virus through an act of bioterrorism. The live vaccine that was pivotal in the eradication of smallpox though considered a gold standard for its efficacy still retains sufficient residual virulence that can cause life-threatening sequelae especially in immune deficient individuals. Therefore, a safer smallpox vaccine that can match the efficacy of first generation vaccines is urgently needed. We previously reported that the integration of human IL-15 cytokine into the genome of Wyeth strain of vaccinia (Wyeth/IL-15), the same strain as the licensed vaccine, generates a vaccine with superior immunogenicity and efficacy in a mouse model. We now demonstrate that Wyeth/IL-15 is non-lethal to athymic nude mice when administered intravenously at a dose of 10(7) plaque forming units and it undergoes enhanced in vivo clearance in these immune deficient mice. Furthermore, a majority of cynomolgus monkeys vaccinated with vaccinia viruses with integrated IL-15, when challenged 3 years later with a lethal dose of monkeypox virus displayed milder clinical manifestations with complete recovery supporting the utility of Wyeth/IL-15 for contemporary populations as a safer and efficacious smallpox vaccine.


Assuntos
Interleucina-15/imunologia , Vacina Antivariólica/imunologia , Varíola/prevenção & controle , Animais , Feminino , Humanos , Interleucina-15/genética , Macaca fascicularis/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Testes de Neutralização , Varíola/imunologia , Vacina Antivariólica/genética , Carga Viral
6.
Proc Natl Acad Sci U S A ; 105(31): 10889-94, 2008 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-18678911

RESUMO

The success of the World Health Organization smallpox eradication program three decades ago resulted in termination of routine vaccination and consequent decline in population immunity. Despite concerns regarding the reintroduction of smallpox, there is little enthusiasm for large-scale redeployment of licensed live vaccinia virus vaccines because of medical contraindications and anticipated serious side effects. Therefore, highly attenuated strains such as modified vaccinia virus Ankara (MVA) are under evaluation in humans and animal models. Previous studies showed that priming and boosting with MVA provided protection for >2 years in a monkeypox virus challenge model. If variola virus were used as a biological weapon, however, the ability of a vaccine to quickly induce immunity would be essential. Here, we demonstrate more rapid immune responses after a single vaccination with MVA compared to the licensed Dryvax vaccine. To determine the kinetics of protection of the two vaccines, macaques were challenged intravenously with monkeypox virus at 4, 6, 10, and 30 days after immunization. At 6 or more days after vaccination with MVA or Dryvax, the monkeys were clinically protected (except for 1 of 16 animals vaccinated with MVA), although viral loads and number of skin lesions were generally higher in the MVA vaccinated group. With only 4 days between immunization and intravenous challenge, however, MVA still protected whereas Dryvax failed. Protection correlated with the more rapid immune response to MVA compared to Dryvax, which may be related to the higher dose of MVA that can be tolerated safely.


Assuntos
Monkeypox virus/imunologia , Vacina Antivariólica/imunologia , Varíola/prevenção & controle , Vacinas Atenuadas/imunologia , Vaccinia virus/imunologia , Animais , Citocinas/sangue , Ensaio de Imunoadsorção Enzimática , Macaca fascicularis , Testes de Neutralização , Vacina Antivariólica/administração & dosagem , Vacinas Atenuadas/administração & dosagem , Replicação Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...